KLASIFIKASI KINERJA PERUSAHAAN DI INDONESIA DENGAN MENGGUNAKAN METODE WEIGHTED K NEAREST NEIGHBOR (Studi Kasus: 436 Perusahaan Yang Terdaftar Di Bursa Efek Indonesia Tahun 2015)

Cyntia Surya Utami, Moch. Abdul Mukid, Sugito Sugito

Abstract


A company's performance can be seen from the analysis of the company's financial statements. Financial statement analysis is used to determine the development of the company's financial condition. In analyzing the financial statements required financial ratios depicting the weight of the company's performance. This thesis aims to classify the performance of the company into two classifications, namely the company healthy and unhealthy companies as well as determine the level of accuracy. This final project using financial ratio data 436 companies listed in the Indonesia Stock Exchange in 2015 which has been audited and is divided into two parts of 349 training data and 87 test data. The method used is the weighted k nearest neighbor with a dependent variable is the performance of the company and six independent variables are financial ratios WCTA, ROA, TATO, DAR, LDAR and ROI. The results of this thesis show that the method of calculation of weighted k k nearest neighbor optimal done by trial and error. Provided that the optimal k at k = 3 for kernel inversion, epanechnikov and triangles while for optimal kernel k gauss at k = 4. The accuracy of classification and classification performance of the company gave almost the same results by using kernel inversion, Gauss, epanechnikov and triangles.

 

Keywords: financial ratios, weighted k nearest neighbor and kernel inversion, Gauss, epanechnikov and triangles.


Keywords


financial ratios, weighted k nearest neighbor and kernel inversion, Gauss, epanechnikov and triangles.

Full Text:

PDF

Refbacks

  • There are currently no refbacks.



Jurnal Ilmiah S1 Statistika

Departemen Statistika Universitas Diponegoro

Gedung F Lantai III, Kampus FSM UNDIP Tembalang

Semarang 50275

Creative Commons License
Jurnal Gaussian by http://ejournal-s1.undip.ac.id/index.php/gaussian/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
baju muslim anak kaos anak muslim baju anak kaos junior kaos anak baju anak perempuan baju muslim anak baju anak branded grosir baju anak baju muslim anak perempuan baju anak anak baju anak import baju anak murah grosir baju anak branded baju anak laki laki baju pesta anak grosir baju anak murah baju anak branded murah grosir baju anak import baju pesta anak perempuan baju anak perempuan lucu baju tidur anak baju anak online grosir baju anak tanah abang jual baju anak baju anak perempuan branded grosir baju anak branded murah baju anak muslim jual baju anak branded baju anak terbaru kaos muslim anak produsen baju anak produsen baju anak murah produsen baju anak branded kaos anak muslim grosir baju anak baju anak kaos junior kaos anak baju anak perempuan baju muslim anak baju anak branded baju muslim anak perempuan baju anak anak baju anak import baju anak murah grosir baju anak branded baju anak laki laki baju pesta anak grosir baju anak murah baju anak branded murah grosir baju anak import baju pesta anak perempuan baju anak perempuan lucu baju anak perempuan branded baju tidur anak baju anak online jual baju anak baju anak muslim grosir baju anak tanah abang jual baju anak branded baju anak terbaru kaos muslim anak produsen baju anak produsen baju anak murah produsen baju anak branded baju anak terbaru kaos muslim anak kaos anak muslim grosir baju anak produsen baju anak murah produsen baju anak branded grosir baju anak branded murah baju pesta anak perempuan


Flag Counter